Lessons Competency
Process Safety Competency (Training and Performance Assurance) | Employee Selection, Placement & Competency, and Health Assurance.
Lessons
All
Asset integrity
Audits & Reviews
Commitment & Culture
Competency
Compliance with Standards
Contractor Management
Control of Work
Emergency Preparedness
Incident Investigation
LEADERSHIP
Management of Change
MONITORING & IMPROVEMENT
Operating Procedures
Operational Integrity
Operational Readiness
Performance Indicators
Process Knowledge
PROCESS SAFETY MANAGEMENT
RISK ANALYSIS
Risk Assessment
RISK MANAGEMENT
Stakeholder Engagement
UNCONFIRMED
Workforce Involvement
Industry
All
Aerospace
Agriculture
Chemicals
Explosives
FMCG
Food & Drink
Fossil Power
Gas Processing
Laboratory
Life Sciences
LNG
LPG
Manufacturing
Metal Processing
Mining
Miscellaneous
Nuclear Power
Offshore
Refining
Onshore Oil & Gas
Petrochemicals
Pipelines
Plastics & Polymers
Pulp & Paper
Rail
Renewable Power
Road
Shipping
Storage
Warehouse
Waste Treatment
Water Treatment
Country
All
AFRICA
Algeria
Angola
Argentina
ASIA
Australia
Bahrain
Belgium
Brazil
Cameroon
Canada
China
Czech Republic
Dutch Antilles
Ecuador
Egypt
EUROPE
Finland
France
Germany
Ghana
India
Indonesia
Ireland
Italy
Ivory Coast
Japan
Kuwait
Lebanon
Lithuania
Malaysia
Mexico
Morocco
Netherlands
New Zealand
Nigeria
NORTH AMERICA
Norway
AUSTRALIA
Oman
Papua New Guinea
Peru
Romania
Russia
Saudi Arabia
Singapore
South Africa
SOUTH AMERICA
South Korea
South Sudan
Spain
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine
Abu Dhabi
United Kingdom
United States
Venezuela
Virgin Islands
Language
All
AR
CS
DE
EN
ES
FR
IT
JA
KO
NL
PL
PT
RO
RU
SV
TR
VI
ZH
LoC
All
Adjacent explosion
Component malfunction
Confined explosion
DAMAGE
Deficiency
DEGRADATION
Deterioration
DEVIATION
DISCHARGE
Fire exposure
Genuine release
Impact
Maintenance error
Material incompatibility
Natural event
Operator error
Overpressure
Overtemperature
Structural settlement
Transport
Underpressure
Undertemperature
UNKNOWN
Incident
All
Asphyxiation
BLEVE
Blowout
Capsize
COLLAPSE
COLLISION
Conflagration
Dust explosion
EXPLOSION
Explosive decomposition
FIRE
Fireball
Flash fire
Fluid release to ground
Fluid release to water
Gas/vapour/mist/etc release to air
IMPACT
Implosion
Jet flame
Pool fire
Pressure burst
Rapid phase-transition explosion
RELEASE
Runaway reaction explosion
Solid release to air
Solid release to ground
Solid release to water
UNKNOWN
VCE
Hazards
All
Asphyxiant
Biological
Corrosive
Electrical
Environmental
Explosive
Flammable
Harmful/Irritant
Mechanical/Kinetic/Potential
Oxidising
Radiological
Reactive
Toxic
Contributory Factors
All
Blockage
Component Malfunction
Containment Failure
Corrosion/Erosion/Fatigue
Cyber Attack
Design of Plant
Domino Effect
Electrostatic Accumulation
Equipment Isolation
Error
EXTERNAL
Fatigue
Health
Housekeeping
HUMAN
Installation
Instrument Failure
Loss of Process Control
Maintenance
Management Attitude
Manufacture/Construction
Natural Event
Object impact
Organization Inadequate
ORGANIZATIONAL
Organized Procedures
Physical Security Breach
PLANT/EQUIPMENT
Process Analysis
Runaway Reaction
Staffing
Supervision
Testing
Training/Instruction
Transport Accident
UNKNOWN
User Unfriendliness
Utilities Failure
Violation
Impact
All
COST (Offsite)
COST (On Site)
ENVIRONMENTAL (Offsite)
ENVIRONMENTAL (On Site)
HUMAN (Offsite At Risk)
HUMAN (Offsite Fatalities)
HUMAN (Offsite Injuries)
HUMAN (On Site At Risk)
HUMAN (On Site Fatalities)
HUMAN (On Site Injuries)
Effects
All
> 100 Fatalities
< 100 Injuries
1-10 Fatalities
11 - 100 Fatalities
11 – 100 Fatalities
≥ 100 Injuries
Environmental
Financial
Equipment
All
Baghouse
Bearing
Blinds
Casing Seal
Conveyer Belt
Dryer
Dust Collector
Expansion Joint
Fittings (Elbow)
Gas-lift Riser
Grain Dryer
Heat Exchanger
Hoses
Instruments
Level
Mechanical
Mill
Pipe
Piping
PSV – Pilot Operated
Reactor
Rotating
Safety & Control
Shell & Tube
Silo
Tanks
Valves - Safety
Vessels
Operation
All
Air Transport
Batch Reaction
Continuous Reaction
Disposal
Electrochemical Operation
Export/Loading
Heat Exchanger
Import/Unloading
Mechanical Transfer
Movement
OTHER
Packaging
Physical Operation
Pipeline Transfer
Power Generation
PROCESS
Processing
propylene
Rail Transport
Road Transport
Ship Transport
Stockholding
STORAGE
TRANSFER
UNKNOWN
Material
All
4-hydroxybenzohydrazide
Acetal
Acetone
Acetylene
Acrylic monomers
Acrylonitrile
Adiponitrile
Alkylate
Allyl alcohol
Allyl chloride
Aluminium
Aluminium Sulphate
Ammonia
Ammonium Nitrate
Ammonium Perchlorate
Antimony Pentachloride
Azodiisobutyronitrile
Barium nitrate
Benzoyl Peroxide
Black Ink
BS&W
Butadiene
Butane
Butylene
Calcium Carbide
Carbon disulfide
Chlorine
Chlorofluoroaniline
Coal
Coke
Coke gas
Colored powder
Compressed Air
Corn
Crude Oil
Cyanide
Cyclohexane
Cyclohexanol
Cyclohexanone
Diesel fuel
Dioxin
Drilling chemicals
Ethane
Ethanol
Ethyl Acetate
Ethyl chloride
Ethylene
Ethylene Oxide
Explosives
Ferric chloride
Fertilizer
Firecrackers/Fireworks
Fish Meal
Fuel Oil
Glycol
Grain Dust
Heptane
Hexane
Hydrocarbons
Hydrochloric acid
Hydrogen
Hydrogen Chloride
Hydrogen Fluoride
Hydrogen Peroxide
Hydrogen Sulfide
Hydroxylamine
Iron
Isobutane
Isobutylene
Limestone
Liquid hydrogen
LNG
LPG
Lubricant additives
MCHM
MCMT
Mercury
Metal Dust
Methane
Methanol
Methomyl
Methyl Chloride
Methyl Ethyl Ketone
Methyl Isocyanate
Methyl Mercaptan
Methylcellulose
Mononitrotoluene
Naptha
NGL
NHP
Nitric acid
Nitric Oxide
Nitro-based fertilizer
Nitrogen
Nitromethane
Nitrous Oxide
Nylon
Octyl Phenol
Oil based solvent
Oil derivatives
Olefins
Oleum
Organic Peroxides
Ortho-Nitrochlorobenzene
Oyxgen
Paraxylene
PCB
Peroxides
Petroleum products
Petroleum/Gasoline
Phenolic resin
Phosgene
Phthalates
Pipeline additives
Plastics
Polybrominated Biphenyl
Polybutadiene
Polyethylene
Polymers
Propane
Propylene
Pyrolysis gasoline
Quartz
Radioisotopes
Resins
Sawdust
Silicon Hydride
Sodium
Sodium Chlorate
Sodium Chlorite
Sodium hydrosulfide
Sodium Hypochlorite
Steam
Steam condensate
Steel
Styrene
Sugar
Sulfuric Acid
Sunflower oil
Terpene
Titanium
Titanium Dioxide
Toluene
Unknown
Urea Ammonium Nitrate
Urea-based fertilizer
Various
Vinyl Chloride Monomer
Vinyl Fluoride
Xylene
Zinc
Zoalene
Live Event Type
All
Training
Conference
Webinar
Online Training
Workshop
Document Type
All
Alert
Article
Blog
Book
Bulletin
Case Study
Guidance
Paper
Podcast
Post
Safety Newsletter
Summary
Video
Webinar
Topics
All
Ageing
Alarm Management
Bowties
Chemical Reaction
Combustible Dust
COVID19
Cyber Security
Design
Flammable Atmospheres
Functional Safety
HAZOP
Human Factors
LOPA
Mitigation Measures
Natural Hazards
Pressure Systems
Quantitative Risk Assessment
Occupied Buildings
Work Management
Origin
All
AIChE
AIDIC
ARIA
BBC News
César Puma
CCPS
CGE Risk
Chemical Processing
CSB
Dekra
Dust Safety Science
Dutch Safety Board
EI
eMARS
EPA
EPSC
HSE
HSL
IAEA
IChemE
IChemE SLP
ioMosaic
ISC
Louise Whiting
MAIB
Marsh
Martin Carter
MKOPSC
NASA
New Zealand Government
NFPA
NRC
NTSB
OECD
Process Safety Integrity
PSA Norway
PSF
Rachael Cowin
Ramin Abhari
Red Risks
Reuters
Smithsonian Channel
Step Change in Safety
Sudaksha
TCE
TSB
TSBC
Wikipedia
WorkSafeBC
Yasmin Ali
Tag
All
Blind
Communication
Condensate
Evacuation
LOPC
LOTO
MoC
Permit
Piper
PtW
TSR
Explosion
Blowout
BOP
Cement
Contractor
Design
Drill
Fire
Macondo
Pollution
Regulatory
Rig
Training
Amusement Park
Autoignition
Banking
BLEVE
Cave Diving
Corrosion Under Insulation
Collision
High North
MHN
MSV
Protection
Riser
Rupture
Procedure
FPSO
Pump
Alarm
Quarters
Camarupim
PSSR
Risk
Deethaniser
Injection
USGP
Erosion
Corrosion
Humber
Geometry
Washwater
Fatality
Texas
Blowdown
NSU
PSV
Trailer
Overfill
ISOM
Splitter
Vent
Richmond
CDU
Silicon
HTSC
Pipe
Fittings
Smoke
Radar
Grounding
Boom
Reef
Ice
Fatigue
OPA
Alcohol
Valdez
VLCC
ATG
Buncefield
Bund
Drain
Gasoline
Human
IHLS
Level
Tank
Flixborough
Competence
Layout
Caprolactam
Bellows
QA
Planning
Temporary
UVCE
Building
Castleford
Jet
MNT
Runaway
CoW
Muster
Nitration
Hickson
PHA
Olefin
Geismar
Exchanger
Hierarchy
Valve
Accountability
MIC
Toxic
Scrubber
Control
Bhopal
Isolation
Sabotage
CMP
Cork
Exotherm
HAZOP
BD
Decomposition
Overpressure
Pharmachem
Reactor
Mile
Melt
Core
Instrumentation
PRV
PWR
Containment
RBMK
Chernobyl
Graphite
Criticality
Radiation
Void
BWR
Fukushima
Regulator
Power
Earthquake
Hydrogen
LOCA
Tsunami
Abbeystead
Methane
Tunnel
Aluminium
Camelford
Flocculant
Monitoring
Emergency
Dust
Preparedness
Leadership
Housekeeping
Sugar
Wentworth
Blockage
Combustion Control
Boil Over
Compressed Gas
Confirmation Bias
Contamination
Creeping Change
Draining
Equipment Identification
Expired Chemicals
Firefighting
Fireproofing
Hot Spots
Winterization
Flanges
High Pressure Water
Laboratory Safety
Hydrogen Attack
Lifting Operations
Loss of Utilities
Low Temperature Embrittlement
Mechanical Seals
Metal Fatigue
Flare Systems
Modern Technology
Nuclear Safety
Normalization of Deviance
Positive Isolation
Release Containment
Safe Operating Limits
Thermal Expansion
Threaded Equipment
Well Control
Water Hammer
Testing
Stress Corrosion Cracking
Security
Permit To Work
Furnaces
Implosion
Inert Atmospheres
Learning from Incidents
Static discharge
Startup Operations
Shift Handover
Relief Systems
Project Management
Process Interruptions
EBV
Embrittlement
Longford
McKee
Chlorine
Dead-leg
Freeze
FCC
DCS
Milford
Maintenance
Troubleshooting
Alarms
Catalyst
Moerdijk
Startup
Floating Roof Tanks
Remote
Virtual
H2S
Hydrogen Sulphide
Minute To Learn
Occupational Safety
Deepwater Horizon
LFL
Worksite Checks
Coastal Flooding
HDPE
Career Path
Grenfell Tower
Configuration Control
Safety Critical Decisions
Time Pressures
Small Businesses
eMARS
Leak Detection
Railways
OECD
Framework
Hand Sanitizer
COMAH
Safety Literacy
Vibration
Electrostatic
December
Summary
At 1:33 pm on December 19, 2007, a powerful explosion and subsequent chemical fire killed four employees and destroyed T2 Laboratories, Inc. (T2), a chemical manufacturer in Jacksonville, Florida. It
Summary
At 1:33 pm on December 19, 2007, a powerful explosion and subsequent chemical fire killed four employees and destroyed T2 Laboratories, Inc. (T2), a chemical manufacturer in Jacksonville, Florida. It injured 32, including four employees and 28 members of the public who were working in surrounding businesses. Debris from the reactor was found up to one mile away, and the explosion damaged buildings within one quarter mile of the facility.
On December 19, T2 was producing its 175th batch of methylcyclopentadienyl manganese tricarbonyl (MCMT). At 1:23 pm, the process operator had an outside operator call the owners to report a cooling problem and request they return to the site. Upon their return, one of the two owners went to the control room to assist. A few minutes later, at 1:33 pm, the reactor burst and its contents exploded, killing the owner and process operator who were in the control room and two outside operators who were exiting the reactor area.
KEY ISSUES:
• REACTIVE HAZARD RECOGNITION
• HAZARD EDUCATION
• EMERGENCY PREPAREDNESS
• PROCESS DESIGN & SCALE-UP
ROOT CAUSES:
• T2 did not recognize the runaway reaction hazard associated with the MCMT it was producing.
Image credit: CSB

January
Summary
One worker died after hazardous chemical vapors released from an over-pressurized reactor burned his respiratory system. The worker charged chemicals inside a reactor vessel and a reaction started before he
Summary
One worker died after hazardous chemical vapors released from an over-pressurized reactor burned his respiratory system. The worker charged chemicals inside a reactor vessel and a reaction started before he could close it.
OSHA’s proposed penalties total $87,780
Proximate causes:
• Inadequate management/supervision
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Google Maps
Summary
On January 7, 1998, two explosions in rapid succession destroyed the Sierra Chemical Company Kean Canyon plant near Mustang, Nevada, killing four workers and injuring six others. The Kean Canyon plant
Summary
On January 7, 1998, two explosions in rapid succession destroyed the Sierra Chemical Company Kean Canyon plant near Mustang, Nevada, killing four workers and injuring six others.
The Kean Canyon plant manufactured explosive boosters for the mining industry. When initiated by a blasting cap or detonation cord, boosters provide the added energy necessary to detonate less sensitive blasting agents or other high explosives. The boosters manufactured at the Kean Canyon plant consisted of a base mix and a second explosive mix, called Pentolite, both of which were poured into cardboard cylinders. The primary explosives used in the base mix were TNT (2,4,6-trinitrotoluene), PETN (pentaerythritol tetranitrate), and Comp-B, a mixture of TNT and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The Pentolite is a mix of TNT and PETN.
KEY ISSUES:
• PROCESS SAFETY MANAGEMENT
• WORKER TRAINING
• PROCESS HAZARD ANALYSIS
• LANGUAGE BARRIERS
ROOT CAUSES:
1. Process hazard analysis (PHA) conducted by the facility was inadequate.
2. Training programs for facility personnel were inadequate.
3. Written operating procedures were inadequate or not available to workers.
4. The facility was built with insufficient separation distances between different operations and the design and construction of buildings was inadequate.
5. There was no systematic safety inspection or auditing program.
6. The employee participation program was inadequate.
Image Credit: CSB

Summary
In a chemical plant that produces fertilizer, carbon dioxide and dry ice, a pipeline explosion occurred. Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285) Image
Summary
In a chemical plant that produces fertilizer, carbon dioxide and dry ice, a pipeline explosion occurred.
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Creston News Advertiser
Summary
An explosion occurred at one of Petrobras’ refineries. The blast occurred at a hydrogen conduit in an enclosed space, causing a flare and a displacement of air that threw the
Summary
An explosion occurred at one of Petrobras’ refineries. The blast occurred at a hydrogen conduit in an enclosed space, causing a flare and a displacement of air that threw the contract workers against the refinery’s metal structure.
Proximate causes:
• Inadequate maintenance
• Failure following procedures
• Lack of work rules/policies/ standards/procedures
• Physical condition (the accident may have been the result of maintenance work being carried out under tight deadlines and long shifts imposed on refinery workers)
• Mental stress
• Mental state
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Daily Motion
Summary
The incident occurred when workers were weighing a barrel of 4-hydroxybenzohydrazide. There was a short circuiting in the weighing scale which led to an explosion. Proximate causes: • Defective equipment Source:
Summary
The incident occurred when workers were weighing a barrel of 4-hydroxybenzohydrazide. There was a short circuiting in the weighing scale which led to an explosion.
Proximate causes:
• Defective equipment
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Survival Technologies
Summary
On January 22 and 23, 2010, three separate incidents at the DuPont plant in Belle, WV, involving releases of methyl chloride, oleum, and phosgene, triggered notification of outside emergency response
Summary
On January 22 and 23, 2010, three separate incidents at the DuPont plant in Belle, WV, involving releases of methyl chloride, oleum, and phosgene, triggered notification of outside emergency response agencies. The incident involving the release of phosgene gas led to the fatal exposure of a worker performing routine duties in an area where phosgene cylinders were stored and used.
Operators discovered the first incident, the release of methyl chloride, the morning of January 22, 2010, when an alarm sounded on the plant’s distributed control system monitor. They confirmed that a release had occurred and that methyl chloride was venting to the atmosphere. Managers assessing the release estimated that more than 2,000 pounds of methyl chloride may have been released over the preceding 5 days.
The oleum release, the second incident, occurred the morning of January 23, 2010. Workers discovered a leak in an overhead oleum sample pipe that was allowing a fuming cloud of oleum to escape to the atmosphere. The plant fire brigade, after donning the appropriate personal protective equipment, closed a valve that stopped the leak about an hour after it was discovered. No injuries occurred, but the plant called the Belle Volunteer Fire Department to assist.
The third incident, a phosgene release, occurred later that same day when a hose used to transfer phosgene from a 1-ton cylinder to a process catastrophically failed and sprayed a worker in the face while he was checking the weight of the cylinder. The employee, who was alone when exposed, was assisted by co-workers who immediately responded to his call for help. Initial assessments by the plant’s occupational health nurse indicated that the worker showed no symptoms of exposure prior to transport to the hospital for observation and treatment. A delayed onset of symptoms, consistent with information in phosgene exposure literature, occurred after he arrived at the hospital. His condition deteriorated over the next day and he died from his exposure the next night.
KEY ISSUES:
• MECHANICAL INTEGRITY
• ALARM MANAGEMENT
• OPERATING PROCEDURES
• COMPANY EMERGENCY RESPONSE & NOTIFICATION
ROOT CAUSES:
Methyl Chloride Incident (January 22, 2010)
1. DuPont management, following their Management of Change process, approved a design for the rupture disc alarm system that lacked sufficient reliability to advise operators of a flammable methyl chloride release.
Oleum Release Incident (January 23, 2010)
1. Corrosion under the insulation caused a small leak in the oleum pipe.
Phosgene Incident (January 23, 2010)
1. DuPont’s phosgene hazard awareness program was deficient in ensuring that operating personnel were aware of the hazards associated with trapped liquid phosgene in transfer hoses.
2. DuPont relied on a maintenance software program that was subject to changes without authorization or review, did not automatically initiate a change-out of phosgene hoses at the prescribed interval, and did not provide a back-up process to ensure timely change-out of hoses.
3. DuPont Belle’s near-miss reporting process was not rigorous enough to ensure that the near failure of a similar phosgene transfer hose, just hours prior to the exposure incident, would be immediately brought to the attention of plant supervisors and managers.
4. DuPont lacked a dedicated radio/telephone system and emergency notification process to convey the nature of an emergency at the Belle plant, thereby restricting the ability of personnel to provide timely and quality information to emergency responders.
Image credit: CSB

Summary
During the early morning hours of January 25, ASCO employees filled cylinders with purchased acetylene. At approximately 9:30 am, with the depletion of the supply of purchased acetylene, they began
Summary
During the early morning hours of January 25, ASCO employees filled cylinders with purchased acetylene. At approximately 9:30 am, with the depletion of the supply of purchased acetylene, they began to produce acetylene from calcium carbide in the generator.
Because of heavy snowfall, workers were shoveling snow in the area south of the decant tanks near the loading dock. At 10:36 am, an explosion occurred, centered in the shed. Two of the workers immediately south of the shed were killed instantly. A third worker farther south, closer to the loading dock, was severely injured and was pronounced dead shortly after arriving at the Newark Medical Center. A fourth worker who was in the loading dock/lime pit area was very seriously injured by the blast. .
KEY ISSUES:
• OPERATING PROCEDURES
• STAFF TRAINING
• DRAIN & VENT TO SAFE LOCATION
• BUILDINGS TO BE DESIGNED FOR ACETYLENE CONTAINMENT
• MECHANICAL INTEGRITY
• POSITIVE ISOLATION
ROOT CAUSES:
1. At ASCO, a line that could potentially contain acetylene drained into an enclosed wooden shed.
2. The shed in this incident was not designed or constructed in accordance with NFPA 51A.
3. At ASCO the check valve was relied upon to prevent backflow. The check valve and block valve that failed at ASCO and allowed backflow were not on a testing or inspection schedule. The single block valve on the recycle water line, which was found closed after the explosion, leaked during post-incident testing.
4. Operators did not use either written operating procedures or check lists for start up of the acetylene generator or recycled water system at this facility.
Image Credit: CSB

Related Events
Summary
A gas leak followed by explosion occurred during an inspection process due to the loose of valve bolt. Proximate causes: • Inadequate training/knowledge transfer (Lack of understanding the process); • Lack
Summary
A gas leak followed by explosion occurred during an inspection process due to the loose of valve bolt.
Proximate causes:
• Inadequate training/knowledge transfer (Lack of understanding the process);
• Lack of work rules/policies/ standards/procedures (wrong procedures for inspections);
• Inadequate work rules plan (lack of the pre-start safety review before inspection).
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Wikipedia
February
Summary
Six workers were fatally injured during a planned work activity to clean debris from natural gas pipes at Kleen Energy in Middletown, CT. To remove the debris, workers used natural
Summary
Six workers were fatally injured during a planned work activity to clean debris from natural gas pipes at Kleen Energy in Middletown, CT. To remove the debris, workers used natural gas at a high pressure of approximately 650 pounds per square inch. The high velocity of the natural gas flow was intended to remove any debris in the new piping. During this process, the natural gas found an ignition source and exploded.
KEY ISSUES:
• SIMILAR NATURAL GAS BLOW INCIDENTS
• INDUSTRY PRACTICES AND SAFER ALTERNATIVE METHODOLOGIES
• HAZARDS OF RELEASING NATURAL GAS NEAR WORK AREAS
• CODES AND STANDARDS
ROOT CAUSES:
1. Natural gas blows are common
2. Workers remained in building during gas blow
Image credit: CSB

Related Events
Summary
On February 7, 2008, at about 7:15 p.m., a series of sugar dust explosions at the Imperial Sugar manufacturing facility in Port Wentworth, Georgia, resulted in 14 worker fatalities. Eight
Summary
On February 7, 2008, at about 7:15 p.m., a series of sugar dust explosions at the Imperial Sugar manufacturing facility in Port Wentworth, Georgia, resulted in 14 worker fatalities. Eight workers died at the scene and six others eventually succumbed to their injuries at the Joseph M. Still Burn Center in Augusta, Georgia. Thirty six workers were treated for serious burns and injuries – some caused permanent, life altering conditions. The explosions and subsequent fires destroyed the sugar packing buildings, palletizer room, and silos, and severely damaged the bulk train car loading area and parts of the sugar refining process areas.
KEY ISSUES:
• COMBUSTIBLE DUST HAZARD RECOGNITION
• MINIMIZING COMBUSTIBLE DUST ACCUMULATION IN THE WORKPLACE
• EQUIPMENT DESIGN & MAINTENANCE
ROOT CAUSES:
1. Sugar and cornstarch conveying equipment was not designed or maintained to minimize the release of sugar and sugar dust into the work area.
2. Inadequate housekeeping practices resulted in significant accumulations of combustible sugar and sugar dust on the floors and elevated surfaces throughout the packing buildings.
3. Imperial Sugar emergency evacuation plans were inadequate. Emergency evacuation drills were not conducted, and prompt worker notification to evacuate in the event of an emergency was inadequate.
Image credit: CSB

Summary
An explosion occurred when 8 personnel were working on the repair of a catalyst tower. Proximate causes: • Inadequate training/knowledge transfer (Lack of understanding the process) • Lack of work rules/policies/
Summary
An explosion occurred when 8 personnel were working on the repair of a catalyst tower.
Proximate causes:
• Inadequate training/knowledge transfer (Lack of understanding the process)
• Lack of work rules/policies/ standards/procedures (wrong procedures for inspections);
• Inadequate work rules plan (lack of the pre-start safety review before inspection).
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)

Summary
Employees at the plant were carrying out their normal duties when two chemical compounds came into contact. An explosion occurred releasing a toxic cloud into the air. Toxic cloud Source:
Summary
Employees at the plant were carrying out their normal duties when two chemical compounds came into contact. An explosion occurred releasing a toxic cloud into the air. Toxic cloud
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Reuters
Summary
Explosion in an oil and gas production ship rented by Petrobras. The explosion occurred aboard the FPSO unit. A leak of flammable substance in the pump room was the cause
Summary
Explosion in an oil and gas production ship rented by Petrobras. The explosion occurred aboard the FPSO unit. A leak of flammable substance in the pump room was the cause of the explosion.
Proximate causes:
• Failure in following procedures
• Lack of work rules/policies/ standards/procedures (breach of operational procedures for the pumping of fluids)
• Inadequate engineering/design
• Inadequate management/ supervision (installation of equipment in pipe without proper technical specification and registration of the change)
• Work exposure to hazardous chemicals (flammable substances) Inadequate assessment of needs and risks
Marsh (https://www.marsh.com/us/insights/research/100-largest-losses-in-the-hydrocarbon-industry.html):
An explosion on a FPSO off the coast of Brazil resulted in nine fatalities and multiple wounded. The accident happened as the vessel was anchored in the Atlantic Ocean 120 kilometres from the coast of Espirito Santos, Brazil. The FPSO is a converted very large crude oil tanker (VLCC), designed to produce up to 10 million cubic meters of natural gas. It is understood that a condensate leak during a fluid transfer operation released a cloud of flammable vapor into the engine room, resulting in an explosion in the machinery space. The majority of fatalities were believed to be part of the emergency response team. FPSO took on water, but the explosion did not result in a breach of the hull of the vessel.
[ Property Damage $250 Million. Estimated Current Value $264 Million ]
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: AFP / Getty Images
Related Events
Summary
A rail car with more than 100 tanks of crude bakken oil derailed in West Virginia, generating a huge fireball, the evacuation of hundreds of people and, a spill into
Summary
A rail car with more than 100 tanks of crude bakken oil derailed in West Virginia, generating a huge fireball, the evacuation of hundreds of people and, a spill into the Kanawha River.
Hundreds evacuated – FRE issued CSX and Sperry Rail Service $25.000 fines each
Proximate causes:
• Inadequate tools, equipment & vehicles (rail defect)
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: US Coast Guard
Summary
An explosion occurred due to an overflow of a slurry mixing tank, containing potassium sulfide, potassium dihydrogen phosphate, and MAP. Proximate causes: • Inadequate training/knowledge transfer (Lack of understanding the process);
Summary
An explosion occurred due to an overflow of a slurry mixing tank, containing potassium sulfide, potassium dihydrogen phosphate, and MAP.
Proximate causes:
• Inadequate training/knowledge transfer (Lack of understanding the process);
• Lack of work rules/policies/ standards/procedures (wrong procedures for inspections);
• Inadequate work rules plan (lack of the pre-start safety review before inspection).
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)

March
Summary
A high-pressure steam (3.7 MPa) discharge occurred during a maintenance process, resulting in three field workers burned to death. Proximate causes: • Lack of work rules/policies/ standards/procedures (wrong procedures for inspections);
Summary
A high-pressure steam (3.7 MPa) discharge occurred during a maintenance process, resulting in three field workers burned to death.
Proximate causes:
• Lack of work rules/policies/ standards/procedures (wrong procedures for inspections);
• Inadequate work rules plan (lack of the pre-start safety review before inspection).
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)

Summary
Four reactors exploded after an initial fire in a warehouse in the plant. The toxic gas released due to the fire and explosion affected the local community. Electrical short circuit
Summary
Four reactors exploded after an initial fire in a warehouse in the plant. The toxic gas released due to the fire and explosion affected the local community. Electrical short circuit and improper shutdown was the reason that triggered the incident.
Proximate causes:
• Inadequate tools, equipment & vehicles (Electrical appliances shortcut)
• Failure in following procedure (improper shutdown)
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)

Summary
On March 11, 2011, the Great East Japan Earthquake triggered an extremely severe nuclear accident at the Fukushima Daiichi Nuclear Power Plant, owned and operated by the Tokyo Electric Power
Summary
On March 11, 2011, the Great East Japan Earthquake triggered an extremely severe nuclear accident at the Fukushima Daiichi Nuclear Power Plant, owned and operated by the Tokyo Electric Power Company (TEPCO). This devastating accident was ultimately declared a Level 7 (“Severe Accident”) by the International Nuclear Event Scale (INES).
When the earthquake occurred, Unit 1 of the Fukushima Daiichi plant was in normal operation at the rated electricity output according to its specifications; Units 2 and 3 were in operation within the rated heat parameters of their specifications; and Units 4 to 6 were undergoing periodical inspections. The emergency shut-down feature, or SCRAM, went into operation at Units 1, 2 and 3 immediately after the commencement of the seismic activity.
Although there were no immediate fatalities, a worker later died from radiation exposure (https://www.reuters.com/article/us-japan-fukushima-radiation/japan-acknowledges-first-radiation-death-among-fukushima-workers-idUSKCN1LL0OA)
Image Credit: NY Times
Topics
Summary
An explosion occurred when 6 personnel were working on the repair of a catalyst tower Proximate causes: • Lack of work rules/policies/ standards/procedures (wrong procedures for inspections); • Inadequate work
Summary
An explosion occurred when 6 personnel were working on the repair of a catalyst tower
Proximate causes:
• Lack of work rules/policies/ standards/procedures (wrong procedures for inspections);
• Inadequate work rules plan (lack of the pre-start safety review before inspection).
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)

Summary
Blaze in a warehouse next to oil factory. Fire created massive plumes of smoke in the area. Fire spread to adjacent paint factory. Damaged buildings Source: A web-based collection and
Summary
Blaze in a warehouse next to oil factory. Fire created massive plumes of smoke in the area. Fire spread to adjacent paint factory. Damaged buildings
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Twitter / News24
Summary
A major explosion in a firecracker unit occurred. The unit was run illegally by the owner who was later taken under custody. Explosions in firecracker units have been a prevalent
Summary
A major explosion in a firecracker unit occurred. The unit was run illegally by the owner who was later taken under custody. Explosions in firecracker units have been a prevalent problem in the state of Seemandhra, India which needs to be addressed.
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: PTI
April
Summary
A fire started inside a depot with 3 million liters of diesel and the flames spread to four neighboring storage tanks. The fire lasted for 9 days. Fine of around USD
Summary
A fire started inside a depot with 3 million liters of diesel and the flames spread to four neighboring storage tanks. The fire lasted for 9 days.
Fine of around USD $6.4 million (R$ 22.5 million). Environmental impact causing death of thousands of fish
Proximate causes:
• Inadequate management/ supervision
• Inadequate work planning
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Paulo Whitaker / Reuters
Summary
Fire in a chemical plant fueled by unidentified chemicals. Two explosions were reported, one of them was a cylinder. Smoke and debris Source: A web-based collection and analysis of process
Summary
Fire in a chemical plant fueled by unidentified chemicals. Two explosions were reported, one of them was a cylinder. Smoke and debris
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Norman Price
Summary
A blast occurred in a pumping station, after leaking oil caught fire. 177 fire engines and more than 800 firefighters were rushed to the blaze, and more than 14,000 residents
Summary
A blast occurred in a pumping station, after leaking oil caught fire. 177 fire engines and more than 800 firefighters were rushed to the blaze, and more than 14,000 residents in the surrounding area were evacuated.
Proximate causes:
• Improper use of protective methods (Improper welding of conveying pipe)
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Getty
Summary
A chemical drum which is speculated to have contained an old chemical exploded at Echotech fiber manufacturing factory workshop. Source: A web-based collection and analysis of process safety incidents (
Summary
A chemical drum which is speculated to have contained an old chemical exploded at Echotech fiber manufacturing factory workshop.
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Unidentified
Summary
Two employees accidently fell in an aerobic tank sewage treatment station. Two more employees fell into the aerobic tank in the subsequent rescue. Proximate causes: • Inadequate tools, equipment & vehicles
Summary
Two employees accidently fell in an aerobic tank sewage treatment station. Two more employees fell into the aerobic tank in the subsequent rescue.
Proximate causes:
• Inadequate tools, equipment & vehicles (Aerobic tank no special ventilation equipment)
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)

Summary
A crack occurred in a pipeline (diameter 200 mm) conveying oil and gas, and the following fire damaged three pumps and some instrumentation Proximate causes: • Inadequate tools, equipment & vehicles
Summary
A crack occurred in a pipeline (diameter 200 mm) conveying oil and gas, and the following fire damaged three pumps and some instrumentation
Proximate causes:
• Inadequate tools, equipment & vehicles (Equipment failure: sealing failure and pipe leak)
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)

Summary
An April 11, 2003, vessel explosion at the D.D. Williamson & Co., Inc. (DDW), plant in Louisville, Kentucky, killed one operator. The explosion damaged the western end of the facility
Summary
An April 11, 2003, vessel explosion at the D.D. Williamson & Co., Inc. (DDW), plant in Louisville, Kentucky, killed one operator. The explosion damaged the western end of the facility and released 26,000 pounds of aqua ammonia (29.4 percent ammonia solution in water), forcing the evacuation of as many as 26 residents and requiring 1,500 people to shelter-in-place.
DDW used the vessel in the manufacture of food-grade caramel coloring. It functioned as a feed tank for a spray dryer that produced powdered colorants. The feed tank, which was heated with steam and pressurized with air, was operated manually. To ensure that the filling, heating, and material transfer processes stayed within operating limits, operators relied on their experience and on readouts from local temperature and pressure indicators.
The feed tank most likely failed as a result of overheating the caramel color liquid, which generated excessive pressure. .
KEY ISSUES:
• OVERPRESSURE PROTECTION
• HAZARD EVALUATION SYSTEMS
• LAYERS OF PROTECTION
• OPERATING PROCEDURES & TRAINING
ROOT CAUSES:
1. D.D. Williamson did not have effective programs in place to determine if equipment and processes met basic process and plant engineering requirements.
2. D.D. Williamson did not have adequate hazard analysis systems to identify feed tank hazards, nor did it effectively use contractors and consultants to evaluate and respond to associated risks.
3. D.D. Williamson did not have adequate operating procedures or adequate training programs to ensure that operators were aware of the risks of allowing the spray dryer feed tanks to overheat and knew how to respond appropriately.
Image Credit: CSB

Summary
A natural gas pipeline that was situated within a plowed field exploded and caused a fire. The location of the explosion helped crews keep it contained. One home was voluntarily
Summary
A natural gas pipeline that was situated within a plowed field exploded and caused a fire. The location of the explosion helped crews keep it contained. One home was voluntarily evacuated
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: News Channel 10 Amarillo
Summary
During the transfer of acetal from one vessel to another a fire and explosion occurred due a chemical reaction, which caused the rupture of one of the vessels. Source: A
Summary
During the transfer of acetal from one vessel to another a fire and explosion occurred due a chemical reaction, which caused the rupture of one of the vessels.
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: Unidentified
Summary
A fire occurred in a company producing ammonia, and other chemical products. The facility was severely damaged in the catastrophic fire. Source: A web-based collection and analysis of process safety incidents
Summary
A fire occurred in a company producing ammonia, and other chemical products. The facility was severely damaged in the catastrophic fire.
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)

Summary
An explosion occurred in a glycol unit refining tower of a petrochemical plant Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285) Image Credit: CCTV
Summary
An explosion occurred in a glycol unit refining tower of a petrochemical plant
Source: A web-based collection and analysis of process safety incidents (https://www.sciencedirect.com/science/article/abs/pii/S0950423016302285)
Image Credit: CCTV