Hazards Reactive
Lessons
All
Asset integrity
Audits & Reviews
Commitment & Culture
Competency
Compliance with Standards
Contractor Management
Control of Work
Emergency Preparedness
Incident Investigation
LEADERSHIP
Management of Change
MONITORING & IMPROVEMENT
Operating Procedures
Operational Integrity
Operational Readiness
Performance Indicators
Process Knowledge
PROCESS SAFETY MANAGEMENT
RISK ANALYSIS
Risk Assessment
RISK MANAGEMENT
Stakeholder Engagement
UNCONFIRMED
Workforce Involvement
Industry
All
Aerospace
Agriculture
Chemicals
Explosives
FMCG
Food & Drink
Fossil Power
Gas Processing
Laboratory
Life Sciences
LNG
LPG
Manufacturing
Metal Processing
Mining
Miscellaneous
Nuclear Power
Offshore
Refining
Onshore Oil & Gas
Petrochemicals
Pipelines
Plastics & Polymers
Pulp & Paper
Rail
Renewable Power
Road
Shipping
Storage
Warehouse
Waste Treatment
Water Treatment
Country
All
AFRICA
Algeria
Angola
Argentina
ASIA
Australia
Bahrain
Belgium
Brazil
Cameroon
Canada
China
Czech Republic
Dutch Antilles
Ecuador
Egypt
EUROPE
Finland
France
Germany
Ghana
India
Indonesia
Ireland
Italy
Ivory Coast
Japan
Kuwait
Lebanon
Lithuania
Malaysia
Mexico
Morocco
Netherlands
New Zealand
Nigeria
NORTH AMERICA
Norway
AUSTRALIA
Oman
Papua New Guinea
Peru
Romania
Russia
Saudi Arabia
Singapore
South Africa
SOUTH AMERICA
South Korea
South Sudan
Spain
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine
Abu Dhabi
United Kingdom
United States
Venezuela
Virgin Islands
Language
All
AR
CS
DE
EN
ES
FR
IT
JA
KO
NL
PL
PT
RO
RU
SV
TR
VI
ZH
LoC
All
Adjacent explosion
Component malfunction
Confined explosion
DAMAGE
Deficiency
DEGRADATION
Deterioration
DEVIATION
DISCHARGE
Fire exposure
Genuine release
Impact
Maintenance error
Material incompatibility
Natural event
Operator error
Overpressure
Overtemperature
Structural settlement
Transport
Underpressure
Undertemperature
UNKNOWN
Incident
All
Asphyxiation
BLEVE
Blowout
Capsize
COLLAPSE
COLLISION
Conflagration
Dust explosion
EXPLOSION
Explosive decomposition
FIRE
Fireball
Flash fire
Fluid release to ground
Fluid release to water
Gas/vapour/mist/etc release to air
IMPACT
Implosion
Jet flame
Pool fire
Pressure burst
Rapid phase-transition explosion
RELEASE
Runaway reaction explosion
Solid release to air
Solid release to ground
Solid release to water
UNKNOWN
VCE
Hazards
All
Asphyxiant
Biological
Corrosive
Electrical
Environmental
Explosive
Flammable
Harmful/Irritant
Mechanical/Kinetic/Potential
Oxidising
Radiological
Reactive
Toxic
Contributory Factors
All
Blockage
Component Malfunction
Containment Failure
Corrosion/Erosion/Fatigue
Cyber Attack
Design of Plant
Domino Effect
Electrostatic Accumulation
Equipment Isolation
Error
EXTERNAL
Fatigue
Health
Housekeeping
HUMAN
Installation
Instrument Failure
Loss of Process Control
Maintenance
Management Attitude
Manufacture/Construction
Natural Event
Object impact
Organization Inadequate
ORGANIZATIONAL
Organized Procedures
Physical Security Breach
PLANT/EQUIPMENT
Process Analysis
Runaway Reaction
Staffing
Supervision
Testing
Training/Instruction
Transport Accident
UNKNOWN
User Unfriendliness
Utilities Failure
Violation
Impact
All
COST (Offsite)
COST (On Site)
ENVIRONMENTAL (Offsite)
ENVIRONMENTAL (On Site)
HUMAN (Offsite At Risk)
HUMAN (Offsite Fatalities)
HUMAN (Offsite Injuries)
HUMAN (On Site At Risk)
HUMAN (On Site Fatalities)
HUMAN (On Site Injuries)
Effects
All
> 100 Fatalities
< 100 Injuries
1-10 Fatalities
11 - 100 Fatalities
11 – 100 Fatalities
≥ 100 Injuries
Environmental
Financial
Equipment
All
Baghouse
Bearing
Blinds
Casing Seal
Conveyer Belt
Dryer
Dust Collector
Expansion Joint
Fittings (Elbow)
Gas-lift Riser
Grain Dryer
Heat Exchanger
Hoses
Instruments
Level
Mechanical
Mill
Pipe
Piping
PSV – Pilot Operated
Reactor
Rotating
Safety & Control
Shell & Tube
Silo
Tanks
Valves - Safety
Vessels
Operation
All
Air Transport
Batch Reaction
Continuous Reaction
Disposal
Electrochemical Operation
Export/Loading
Heat Exchanger
Import/Unloading
Mechanical Transfer
Movement
OTHER
Packaging
Physical Operation
Pipeline Transfer
Power Generation
PROCESS
Processing
propylene
Rail Transport
Road Transport
Ship Transport
Stockholding
STORAGE
TRANSFER
UNKNOWN
Material
All
4-hydroxybenzohydrazide
Acetal
Acetone
Acetylene
Acrylic monomers
Acrylonitrile
Adiponitrile
Alkylate
Allyl alcohol
Allyl chloride
Aluminium
Aluminium Sulphate
Ammonia
Ammonium Nitrate
Ammonium Perchlorate
Antimony Pentachloride
Azodiisobutyronitrile
Barium nitrate
Benzoyl Peroxide
Black Ink
BS&W
Butadiene
Butane
Butylene
Calcium Carbide
Carbon disulfide
Chlorine
Chlorofluoroaniline
Coal
Coke
Coke gas
Colored powder
Compressed Air
Corn
Crude Oil
Cyanide
Cyclohexane
Cyclohexanol
Cyclohexanone
Diesel fuel
Dioxin
Drilling chemicals
Ethane
Ethanol
Ethyl Acetate
Ethyl chloride
Ethylene
Ethylene Oxide
Explosives
Ferric chloride
Fertilizer
Firecrackers/Fireworks
Fish Meal
Fuel Oil
Glycol
Grain Dust
Heptane
Hexane
Hydrocarbons
Hydrochloric acid
Hydrogen
Hydrogen Chloride
Hydrogen Fluoride
Hydrogen Peroxide
Hydrogen Sulfide
Hydroxylamine
Iron
Isobutane
Isobutylene
Limestone
Liquid hydrogen
LNG
LPG
Lubricant additives
MCHM
MCMT
Mercury
Metal Dust
Methane
Methanol
Methomyl
Methyl Chloride
Methyl Ethyl Ketone
Methyl Isocyanate
Methyl Mercaptan
Methylcellulose
Mononitrotoluene
Naptha
NGL
NHP
Nitric acid
Nitric Oxide
Nitro-based fertilizer
Nitrogen
Nitromethane
Nitrous Oxide
Nylon
Octyl Phenol
Oil based solvent
Oil derivatives
Olefins
Oleum
Organic Peroxides
Ortho-Nitrochlorobenzene
Oyxgen
Paraxylene
PCB
Peroxides
Petroleum products
Petroleum/Gasoline
Phenolic resin
Phosgene
Phthalates
Pipeline additives
Plastics
Polybrominated Biphenyl
Polybutadiene
Polyethylene
Polymers
Propane
Propylene
Pyrolysis gasoline
Quartz
Radioisotopes
Resins
Sawdust
Silicon Hydride
Sodium
Sodium Chlorate
Sodium Chlorite
Sodium hydrosulfide
Sodium Hypochlorite
Steam
Steam condensate
Steel
Styrene
Sugar
Sulfuric Acid
Sunflower oil
Terpene
Titanium
Titanium Dioxide
Toluene
Unknown
Urea Ammonium Nitrate
Urea-based fertilizer
Various
Vinyl Chloride Monomer
Vinyl Fluoride
Xylene
Zinc
Zoalene
Live Event Type
All
Training
Conference
Webinar
Online Training
Workshop
Document Type
All
Alert
Article
Blog
Book
Bulletin
Case Study
Guidance
Paper
Podcast
Post
Safety Newsletter
Summary
Video
Webinar
Topics
All
Ageing
Alarm Management
Bowties
Chemical Reaction
Combustible Dust
COVID19
Cyber Security
Design
Flammable Atmospheres
Functional Safety
HAZOP
Human Factors
LOPA
Mitigation Measures
Natural Hazards
Pressure Systems
Quantitative Risk Assessment
Occupied Buildings
Work Management
Origin
All
AIChE
AIDIC
ARIA
BBC News
César Puma
CCPS
CGE Risk
Chemical Processing
CSB
Dekra
Dust Safety Science
Dutch Safety Board
EI
eMARS
EPA
EPSC
HSE
HSL
IAEA
IChemE
IChemE SLP
ioMosaic
ISC
Louise Whiting
MAIB
Marsh
Martin Carter
MKOPSC
NASA
New Zealand Government
NFPA
NRC
NTSB
OECD
Process Safety Integrity
PSA Norway
PSF
Rachael Cowin
Ramin Abhari
Red Risks
Reuters
Smithsonian Channel
Step Change in Safety
Sudaksha
TCE
TSB
TSBC
Wikipedia
WorkSafeBC
Yasmin Ali
Tag
All
Blind
Communication
Condensate
Evacuation
LOPC
LOTO
MoC
Permit
Piper
PtW
TSR
Explosion
Blowout
BOP
Cement
Contractor
Design
Drill
Fire
Macondo
Pollution
Regulatory
Rig
Training
Amusement Park
Autoignition
Banking
BLEVE
Cave Diving
Corrosion Under Insulation
Collision
High North
MHN
MSV
Protection
Riser
Rupture
Procedure
FPSO
Pump
Alarm
Quarters
Camarupim
PSSR
Risk
Deethaniser
Injection
USGP
Erosion
Corrosion
Humber
Geometry
Washwater
Fatality
Texas
Blowdown
NSU
PSV
Trailer
Overfill
ISOM
Splitter
Vent
Richmond
CDU
Silicon
HTSC
Pipe
Fittings
Smoke
Radar
Grounding
Boom
Reef
Ice
Fatigue
OPA
Alcohol
Valdez
VLCC
ATG
Buncefield
Bund
Drain
Gasoline
Human
IHLS
Level
Tank
Flixborough
Competence
Layout
Caprolactam
Bellows
QA
Planning
Temporary
UVCE
Building
Castleford
Jet
MNT
Runaway
CoW
Muster
Nitration
Hickson
PHA
Olefin
Geismar
Exchanger
Hierarchy
Valve
Accountability
MIC
Toxic
Scrubber
Control
Bhopal
Isolation
Sabotage
CMP
Cork
Exotherm
HAZOP
BD
Decomposition
Overpressure
Pharmachem
Reactor
Mile
Melt
Core
Instrumentation
PRV
PWR
Containment
RBMK
Chernobyl
Graphite
Criticality
Radiation
Void
BWR
Fukushima
Regulator
Power
Earthquake
Hydrogen
LOCA
Tsunami
Abbeystead
Methane
Tunnel
Aluminium
Camelford
Flocculant
Monitoring
Emergency
Dust
Preparedness
Leadership
Housekeeping
Sugar
Wentworth
Blockage
Combustion Control
Boil Over
Compressed Gas
Confirmation Bias
Contamination
Creeping Change
Draining
Equipment Identification
Expired Chemicals
Firefighting
Fireproofing
Hot Spots
Winterization
Flanges
High Pressure Water
Laboratory Safety
Hydrogen Attack
Lifting Operations
Loss of Utilities
Low Temperature Embrittlement
Mechanical Seals
Metal Fatigue
Flare Systems
Modern Technology
Nuclear Safety
Normalization of Deviance
Positive Isolation
Release Containment
Safe Operating Limits
Thermal Expansion
Threaded Equipment
Well Control
Water Hammer
Testing
Stress Corrosion Cracking
Security
Permit To Work
Furnaces
Implosion
Inert Atmospheres
Learning from Incidents
Static discharge
Startup Operations
Shift Handover
Relief Systems
Project Management
Process Interruptions
EBV
Embrittlement
Longford
McKee
Chlorine
Dead-leg
Freeze
FCC
DCS
Milford
Maintenance
Troubleshooting
Alarms
Catalyst
Moerdijk
Startup
Floating Roof Tanks
Remote
Virtual
H2S
Hydrogen Sulphide
Minute To Learn
Occupational Safety
Deepwater Horizon
LFL
Worksite Checks
Coastal Flooding
HDPE
Career Path
Grenfell Tower
Configuration Control
Safety Critical Decisions
Time Pressures
Small Businesses
eMARS
Leak Detection
Railways
OECD
Framework
Hand Sanitizer
COMAH
Safety Literacy
Vibration
Electrostatic
February
Summary
Overheating and explosion of a reactor occurred, likely as a result of a runaway reaction. The cause was suspected to be the addition of the incorrect component. A neighboring building
Summary
Overheating and explosion of a reactor occurred, likely as a result of a runaway reaction. The cause was suspected to be the addition of the incorrect component. A neighboring building also was destroyed.
[ Property Damage $63 Million. Estimated Current Value $141 Million ]
Image credit: Currenta
Summary
On February 19, 1999, a process vessel containing several hundred pounds of hydroxylamine exploded at the Concept Sciences Inc. production facility near Allentown, Pennsylvania. Employees were distilling an aqueous solution
Summary
On February 19, 1999, a process vessel containing several hundred pounds of hydroxylamine exploded at the Concept Sciences Inc. production facility near Allentown, Pennsylvania. Employees were distilling an aqueous solution of hydroxylamine and potassium sulfate, the first commercial batch to be processed at the facility. After the distillation process was shut down, the HA in the process tank and associated piping explosively decomposed, most likely due to high concentration and temperature. Four CSI employees and a manager of an adjacent business were killed. Two CSI employees survived the blast with moderate-to-serious injuries. Four people in nearby buildings were injured. The explosion also caused significant damage to other buildings in the Lehigh Valley Industrial Park and shattered windows in several nearby homes.
KEY ISSUES:
• HAZARDS OF PROCESSING HYDROXYLAMINE
• PROCESS HAZARDS EVALUATION
• CHEMICAL FACILITY SITING
ROOT CAUSES:
1. CSI’s process safety management systems were insufficient to properly address the hazards inherent in its HA manufacturing process and to determine whether these hazards presented substantial risks.
2. Inadequate collection and analysis of process safety information contributed to CSI’s failure to recognize specific explosion hazards.
3. Basic process safety and chemical engineering practices – such as process design reviews, hazard analyses, corrective actions, and reviews by appropriate technical experts – were not adequately implemented.
4. The existing system of siting approval by local authorities allowed a highly hazardous facility to be inappropriately located in a light industrial park.
Image Credit: CSB

March
Summary
On March 13, 2001, three people were killed as they opened a process vessel containing hot plastic at the BP Amoco Polymers plant in Augusta, Georgia. They were unaware that
Summary
On March 13, 2001, three people were killed as they opened a process vessel containing hot plastic at the BP Amoco Polymers plant in Augusta, Georgia. They were unaware that the vessel was pressurized. The workers were killed when the partially unbolted cover blew off the vessel, expelling hot plastic. The force of the release caused some nearby tubing to break. Hot fluid from the tubing ignited, resulting in a fire.
KEY ISSUES:
• RECOGNITION OF REACTIVE HAZARDS
• LEARNING FROM NEAR-MISS INCIDENTS
• OPENING OF PROCESS EQUIPMENT
ROOT CAUSES:
1. Amoco, the developer of the Amodel process, did not adequately review the conceptual process design to identify chemical reaction hazards.
2. The Augusta facility did not have an adequate review process for correcting design deficiencies.
3. The Augusta site system for investigating incidents and nearmiss incidents did not adequately identify causes or related hazards. This information was needed to correct the design and operating deficiencies that led to the recurrence of incidents.
Image Credit: CSB

Related Events
Summary
On March 21, 2011, during calcium carbide production at the Carbide Industries plant in Louisville, KY, an electric arc furnace exploded, ejecting solid and powdered debris, flammable gases, and molten
Summary
On March 21, 2011, during calcium carbide production at the Carbide Industries plant in Louisville, KY, an electric arc furnace exploded, ejecting solid and powdered debris, flammable gases, and molten calcium carbide at temperatures near 3800°F (2100°C). Two workers died and two others were injured.
KEY ISSUES:
• FACILITY SITING
• NORMALIZATION OF DEVIANCE
• CONSENSUS STANDARDS
ROOT CAUSES:
1. Despite past incidents, neither the previous owners nor Carbide Industries identified that the control room should be relocated and cameras installed to better protect workers while they remotely monitored the furnace.
2. Carbide Industries issued 26 work orders for leak repair for water leaks on the furnace cover in the five months prior to the March 2011 incident, but continued operating the furnace despite the hazard from ongoing water leaks.
3. The company did not adequately address past explosive incidents, which normalized blows as routine events.
4. The company did not have a process safety management program in place that required the elimination of overpressure incidents in the furnace.
Image credit: CSB

April
Summary
On April 8, 1998, an explosion and fire occurred during the production of Automate Yellow 96 Dye at the Morton International Inc. plant in Paterson, New Jersey. The explosion and
Summary
On April 8, 1998, an explosion and fire occurred during the production of Automate Yellow 96 Dye at the Morton International Inc. plant in Paterson, New Jersey. The explosion and fire were the consequence of a runaway reaction, which overpressurized a 2000-gallon chemical vessel and released flammable material that ignited. Nine employees were injured.
KEY ISSUES:
• INTERNAL HAZARD COMMUNICATION & PROCESS SAFETY INFORMATION
• REACTIVE HAZARD MANAGEMENT
• PROCESS SAFETY MANAGEMENT
ROOT CAUSES:
1. Neither the preliminary hazard assessment conducted by Morton in Paterson during the design phase in 1990 nor the process hazard analysis conducted in 1995 addressed the reactive hazards of the Yellow 96 process.
2. Process safety information provided to plant operations personnel and the process hazard analysis team did not warn them of the potential for a dangerous runaway chemical reaction.
Image Credit: CSB

Summary
On April 25, 2002, a chemical waste-mixing incident occurred at Kaltech Industries Group, Inc., a sign manufacturer located in the Chelsea district of New York City. At least 36 people
Summary
On April 25, 2002, a chemical waste-mixing incident occurred at Kaltech Industries Group, Inc., a sign manufacturer located in the Chelsea district of New York City. At least 36 people were injured, including members of the public and six firefighters. Kaltech employees were consolidating hazardous waste from smaller containers into two larger drums when the explosion and fire occurred.
The Kaltech facility was located in a mixed-occupancy building in a densely populated urban area. Because the highly confined workspace in the basement offered limited pathways for the explosion to vent, there was extensive damage to the 10-story building. Street traffic was restricted for several days, and building tenants faced significant business interruptions.
KEY ISSUES:
• HAZARD COMMUNICATION
• HAZARDOUS WASTE HANDLING
• MUNICIPAL OVERSIGHT
ROOT CAUSES:
1. Kaltech did not develop or maintain a chemical hazard communication program in accordance with established OSHA standards.
2. Kaltech did not manage its hazardous waste in accordance with established EPA regulations.
Image Credit: CSB

Summary
A runaway chemical reaction occurred at Corden Pharma Ltd in Cork on Monday 28th April 2008. The incident resulted in the death of one operator and serious injury to another.
Summary
A runaway chemical reaction occurred at Corden Pharma Ltd in Cork on Monday 28th April 2008. The incident resulted in the death of one operator and serious injury to another. The investigation carried out jointly between the Health and Safety Authority and Chilworth showed that the immediate cause of the incident was due to omission of acetone in reactor K6003 prior to Diethylcarbamoyl chloride (DECC) addition during synthesis of the acyloxypyridinium salt precursor to 2-cyano-3-methylpyridine. This resulted in a higher than expected adiabatic temperature rise leading to a two-stage decomposition, firstly of the acyloxypyridinium salt and then of the Picoline-Noxide starting material. The energy of the event was significant and resulted in considerable distortion of the reactor and release of contents at high temperature and pressure. The pressure wave resulted in significant building damage and ejection of debris. The exact reason why acetone was omitted has never been established although, with such a potentially severe consequence, the investigation concluded that more should have been done to eliminate the possibility of human error for this process step. The investigation also highlighted deficiencies in the sites execution of its process safety management systems, particular its HAZOP / risk assessment for this process.
Image credit: Independent.ie
Related Events
May
Summary
Workers were preparing to check a compressor in the nitroparaffin unit when they noticed a small fire and sounded the plant fire alarm. About 30 seconds later, an explosion occurred,
Summary
Workers were preparing to check a compressor in the nitroparaffin unit when they noticed a small fire and sounded the plant fire alarm. About 30 seconds later, an explosion occurred, which was followed by a series of smaller explosions. The effects of the initial explosion were reported as far away as eight miles from the plant. Additionally, the initial explosion completely damaged an area of the plant approximately the size of a city block. Subsequent fires were reported to have burned for more than seven hours. Although the incident did not damage the two ammonia units on site, the entire plant was temporarily shut down for precautionary measures.
[ Property Damage $120 Million. Estimated Current Value $257 Million ]
Image credit: No credit